Seminar
Advanced Design Theories and Technology for Complex Systems (4)

1. Knowledge-Based Design Environments: Software Development
 Nov. 6, 19.00pm, 2012

2. Next Generation Design Systems: Knowledge-Based Multi-disciplinary Design Optimization
 Nov. 8, 9.00am, 2012

Lecturer
Prof. Michel van Tooren Mr. Reinier van Dijk
Delft University of Technology

Sponsor
International Collaboration Innovation Team Project of Tsinghua University

Organizer
Institute of Design Engineering
Tsinghua University
http://adcp2012.com
Contact
Reinier van Dijk
Ph.D. Candidate Advanced Design Methodologies
Department of Flight Performance and Propulsion
Delft University of Technology
The Netherlands
email: R.E.C.vanDijk@tudelft.nl

Dr. Hou Yuemin
Institute of Design Engineering, Precision Instruments and Mechanology Department
Tsinghua University
Beijing 100084, China
Tel: 8610-62773470
hym01 at mails.tsinghua.edu.cn
Introduction to the lecturers

Prof. Michel van Tooren
Aerospace Faculty
Delft University of Technology

Mr. Reinier van Dijk
Aerospace Faculty
Delft University of Technology

Prof. Michel van Tooren obtained his PhD at Delft University on Composite Fuselage Design in 1998. After positions as researcher and assistant professor at the Faculty of Aerospace Engineering, he became full professor Systems Integration Aircraft in 2002. In 2010 he accepted a job in industry and is now Manager New Concept Development at Fokker Aerostructures BV. He combines this with a part-time appointment as professor Systems Integration Aircraft at the section Flight Performance and Propulsion of the Delft University of Technology. In addition he is member of the scientific board of the NLR (Netherlands Aerospace Laboratories), member of the Technical Committee Multi-disciplinary Design and Optimization, American Institute of Aeronautics and Astronautics.

Mr. Reinier van Dijk holds an M.Sc. degree in aerospace engineering. Has previous part-time work experience as knowledge engineer at Fokker Aerostructures, aerodynamicist at Lockheed Martin Aeronautics and researcher at the Dutch National Aerospace Laboratory. Currently holds a Ph.D. position at the department of Flight Performance and Propulsion, Delft University of Technology. Researches Knowledge-Based Engineering (KBE) and Simulation Workflow Management (SFWM) as means to automate routine design tasks typically found in the engineering industry in order to cut lead times, cost and enable more thorough explorations of design space. Particular research focus is given to the methodology and software tools to facilitate the KBE and SWFM software development processes. Active in three (former) FP7/FP6 European projects: iProd (ICT Technology for Model Based System Engineering), Smart Fixed Wing Aircraft (Clean Sky JTI) and PEGASUS (finished).
Seminar

Advanced Design Theories and Technology for Complex Systems (4)

Lecturers:

Prof. Michel van Tooren
Mr. Reinier van Dijk

Faculty of Aerospace, Delft University of Technology

Venue

Meeting room 4304, Precision Instrument & Mechanology Department,
Tsinghua University

Lecture 1: Knowledge-Based Design Environments: Software Development
Nov. 6, 19.00pm, 2012

Lecture 2: Next Generation Design Systems: Knowledge-Based Multi-disciplinary Design Optimization
Nov. 8, 9.00am, 2012

3. Reinier van Dijk, Roberto d’Ippolito, Gabriele Tosi, Gianfranco La Rocca, Multidisciplinary design and optimization of a plastic injection mold using an integrated design and engineering environment, NAFEMS World Congress 2011, Boston, USA, 23-26 May, 2011, at: http://repository.tudelft.nl/view/ir/uuid%3A26d5c229-c770-4080-82af-b12ae97a2a0b/

4. Reinier van Dijk, Intelligent design software for a smart car; knowledge based engineering in the automotive industry, Leonardo Times, 15 June 2011, available at: http://repository.tudelft.nl/view/ir/uuid%3A7a7d8a0c-72eb-4c96-b0d6-5076f7d99fd4/

Index

Part 1: Papers

A critical review of Knowledge-Based Engineering: An identification of research challenges, Advanced Engineering Informatics
Review of a language based technology to support engineering design, Advanced Engineering Informatics
Multidisciplinary design and optimization of a plastic injection mold using an integrated design and engineering environment
knowledge based engineering in the automotive industry
Multidisciplinary Design Optimization: A Survey of Architectures
Evaluation of Multidisciplinary Optimization Approaches for Aircraft Conceptual Design

Part 2: Slides

An Introduction to MDO and KBE
The Design and Engineering Engine: A design framework to support multidisciplinary design optimization
Introduction to Knowledge Based Engineering: Generative modeling for multidisciplinary design and simulation
KBE System for aircraft design: An overview on aircraft modeling and computational design systems under development at the TU Delft
Next Generation Design Systems: Knowledge-Based Multi-disciplinary Design Optimization
Multidisciplinary Design and Optimization of Aircraft Box Structures Conceptual Design